Charge transmission through a molecular wire: the role of terminal sites for the current-voltage behavior.

نویسندگان

  • E G Petrov
  • Ya R Zelinskyy
  • V May
  • P Hänggi
چکیده

The current-voltage and the conductance-voltage characteristics are analyzed for a particular type of molecular wire embedded between two electrodes. The wire is characterized by internal molecular units where the lowest occupied molecular orbital (LUMO) levels are positioned much above the Fermi energy of the electrodes, as well as above the LUMO levels of the terminal wire units. The latter act as specific intermediate donor and acceptor sites which in turn control the current formation via the superexchange and sequential electron transfer mechanisms. According to the chosen wire structure, intramolecular multiphonon processes may block the superexchange component of the interelectrode current, resulting in a negative differential resistance of the molecular wire. A pronounced current rectification appears if (i) the superexchange component dominates the electron transfer between the terminal sites and if (ii) the multiphonon suppression of distant superexchange charge hopping events between those sites is nonsymmetric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Princiles Study of the Electron Transport Properties of Buthane-dithiol Nano-Molecular Wire

We report a first-principles study of electrical transport in a single molecular conductor consisting of a buthane-dithiol sandwiched between two Au (100) electrodes. We show that the current was increased by increasing of the external voltage biases. The projected density of states (PDOS) and transmission coefficients (T(E)) under various external voltage biases are analyzed, and it suggests t...

متن کامل

Theoretical Studies of Electrical Characteristics of the Nitrogen Laser

A theoretical analysis of the circuits for a nitrogen laser driven by the Blumlein or capacitor charge transfer transmission line is given in detail. The electrical characteristics of the charge line for a special case of resonant charging are discussed and the effects of various parameters on voltage and current are investigated. By using MICRO-CAP software the transient behavior of the curren...

متن کامل

I-V Characteristics of a Molecular Wire of Polyaniline (Emeraldine Base)

In this study, Polyaniline molecule (emeraldine base) is modeled as a molecular wire and the effects of the metal/molecule coupling strength and the molecule length on the current-voltage (I-V) characteristics are numerically investigated. Using a tight-binding Hamiltonian model, the methods based on Non-equilibrium Green’s function theory, Landauer formalism and Newns-Anderson model, our calcu...

متن کامل

Bistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit

We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...

متن کامل

Spin - boson description of electron transmission through a molecular wire q

A spin-boson model based on local pseudo-spins acting in the electronic occupation number space is suggested and used to describe the thermally activated interelectrode current through a molecular wire. Utilizing the density matrix technique a unified description is achieved of all those kinetic processes which contribute to the inelastic current formation. These processes cover a specific supe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 127 8  شماره 

صفحات  -

تاریخ انتشار 2007